Parallel Conjugate Gradient: Effects of Ordering Strategies,
Programming Paradigms, and Architectural Platforms

L. Oliker, X. Li
NERSC
Mail Stop 50F
Lawrence Berkeley Natl. Lab.
Berkeley, CA 94720

Abstract

The Conjugate Gradient (CG) algorithm is perhaps
the best-known iterative technique to solve sparse lin-
ear systems that are symmetric and positive definite.
A sparse matrix-vector multiply (SPMV) usually ac-
counts for most of the floating-point operations within
a CG iteration. In this paper, we investigate the ef-
fects of various ordering and partitioning strategies on
the performance of parallel CG and SPMV using dif-
ferent programming paradigms and architectures. Re-
sults show that for this class of applications, ordering
significantly improves overall performance, that cache
reuse may be more important than reducing commu-
nication, and that it is possible to achieve message
passing performance using shared-memory constructs
through careful data ordering and distribution. How-
ever, a multithreaded implementation of CG on the
Tera MTA does not require special ordering or parti-
tioning to obtain high efficiency and scalability.

1 Introduction

The ability of computers to solve hitherto in-
tractable problems and simulate complex processes us-
ing mathematical models makes them an indispens-
able part of modern science and engineering. Com-
puter simulations of large-scale realistic applications
usually require solving a set of non-linear partial dif-
ferential equations (PDEs) over a finite region. Struc-
tured grids are the most natural way to discretize such
a computational domain; however, complicated do-
mains must often be divided into multiple structured
grids to be completely discretized, requiring a great
deal of human intervention. Unstructured meshes, by
contrast, can be generated automatically for applica-
tions with complex geometries or those with dynam-
ically moving boundaries (but at the cost of higher

G. Heber
Cornell Theory Ctr.
638 Rhodes Hall

Cornell University
Ithaca, NY 14853

R. Biswas
Computer Sciences Corp.
Mail Stop T27A-1
NASA Ames Res. Ctr.
Moftett Field, CA 94035

storage requirements to explicitly store the connectiv-
ity information for every point in the mesh). They
also facilitate dynamic grid adaptation to efficiently
solve problems with evolving physical features such as
shock waves, vortices, detonations, shear layers, and
crack propagation.

The process of obtaining numerical solutions to the
governing PDEs requires solving large sparse linear
systems or eigen systems defined over the unstructured
meshes that model the underlying physical objects.
The Conjugate Gradient (CG) algorithm is perhaps
the best-known iterative technique to solve sparse lin-
ear systems that are symmetric and positive definite.
Within each iteration of CG, the sparse matrix vector
multiply (SPMYV) is usually the most expensive oper-
ation.

On uniprocessor machines, numerical solutions of
such complex, real-life problems can be extremely time
consuming, a fact driving the development of increas-
ingly powerful parallel multiprocessor supercomput-
ers. The unstructured, dynamic nature of many sys-
tems worth simulating, however, makes their efficient
parallel implementation a daunting task. This is pri-
marily due to the load imbalance created by the dy-
namically changing nonuniform grids and the irregular
data access patterns. These cause significant commu-
nication at runtime, leaving many processors idle and
adversely affecting the total execution time.

Furthermore, modern computer architectures,
based on deep memory hierarchies, show acceptable
performance only if users care about the proper dis-
tribution and placement of their data [2, 8]. Single-
processor performance crucially depends on the ex-
ploitation of locality, and parallel performance de-
grades significantly if inadequate partitioning of data
causes excessive communication and/or data migra-
tion. The traditional approach would be to use a so-
phisticated partitioning algorithm, and then to post-

process the resulting partitions with an enumeration
strategy for enhanced locality. Although, in that
sense, optimizations for partitioning and locality may
be treated as separate problems, real applications tend
to show a rather intricate interplay of both.

In this paper, we investigate the effects of vari-
ous ordering and partitioning strategies on the per-
formance of CG and SPMV using different program-
ming paradigms and architectures. In particular, we
use the reverse Cuthill-McKee [3] and the self-avoiding
walks [5] ordering strategies, and the METIS [7] par-
titioner. We examine parallel implementations of CG
using MPI, shared-memory compiler directives, and
multithreading, on three state-of-the-art parallel su-
percomputers: a Cray T3E, an SGI Origin2000, and a
Tera MTA. Results show that ordering significantly
improves overall performance, that cache reuse can
be more important than reducing communication, and
that it is possible to achieve message passing perfor-
mance using shared-memory constructs through care-
ful data ordering and distribution. However, the mul-
tithreaded implementation does not require any spe-
cial ordering or partitioning to obtain high efficiency
and scalability.

2 Partitioning and Linearization

Space-filling curves have been demonstrated to be
an elegant and unified linearization approach for cer-
tain problems in N-body and FEM simulations, mesh
partitioning, and other graph-related areas [4, 9, 10,
11, 13]. The linearization of a higher-dimensional spa-
tial structure, i.e. its mapping onto a one-dimensional
structure, is exploited in two ways: First, the local-
ity preserving nature of the construction fits elegantly
into a given memory hierarchy, and second, the par-
titioning of a contiguous linear object is trivial. For
our experiments, we pursued both strategies with some
modifications. In the following, we briefly describe the
two classes of enumeration techniques and the general-
purpose graph partitioner which were used.

2.1 Cuthill-McKee Algorithms (CM)

The particular enumeration of the vertices in a
FEM discretization controls, to a large extent, the
sparseness pattern of the resulting stiffness matrix.
The bandwidth, or profile, of the matrix has a sig-
nificant impact on the efficiency of linear systems
and eigensolvers. Cuthill and McKee [3] suggested
a simple algorithm based on ideas from graph the-
ory. Starting from a vertex of minimal degree, levels

of increasing distance from that vertex are first con-
structed. The enumeration is then performed level-by-
level with increasing vertex degree (within each level).
Several variations of this method have been suggested,
the most popular being reverse Cuthill-McKee (RCM)
where the level construction is restarted from a vertex
of minimal degree in the final level. In many cases,
it has been shown that RCM improves the profile of
the resulting matrix. The class of CM algorithms are
fairly straightforward to implement and largely benefit
by operating on a pure graph structure, i.e. the under-
lying graph is not necessarily derived from a triangular
mesh.

2.2 Self-Avoiding Walks (SAW)

These were proposed recently [5] as a mesh-based
(as opposed to geometry-based) technique with similar
application areas as space-filling curves. A SAW over a
triangular mesh is an enumeration of the triangles such
that two consecutive triangles (in the SAW) share an
edge or a vertex, i.e. there are no jumps in the SAW. It
can be shown that walks with more specialized prop-
erties exist over arbitrary unstructured meshes, and
that there is an algorithm for their construction whose
complexity is linear in the number of triangles in the
mesh. Furthermore, SAWs are amenable to hierar-
chical coarsening and refinement, i.e. they have to be
rebuilt only in regions where mesh adaptation occurs,
and can therefore be easily parallelized. SAW, unlike
CM, is not a technique designed specifically for ver-
tex enumeration; thus, it cannot operate on the bare
graph structure of a triangular mesh. This implies a
higher construction cost for SAWs, but several differ-
ent vertex enumerations can be derived from a given

SAW.
2.3 Graph Partitioning (e.g. METIS)

Some excellent parallel graph partitioning algo-
rithms have been developed and implemented in the
last decade that are extremely fast while giving good
load balance quality and low edge cuts. Perhaps the
most popular is METIS [7] that belongs to the class of
multilevel partitioners. METIS reduces the size of the
graph by collapsing vertices and edges using a heavy
edge matching scheme, applies a greedy graph growing
algorithm for partitioning the coarsest graph, and then
uncoarsens it back using a combination of boundary
greedy and Kernighan-Lin refinement to construct a
partitioning for the original graph. Partitioners strive
to balance the computational workload among pro-
cessors while reducing interprocessor communication.

Improving cache performance is not a typical objective
of most partitioning algorithms.

3 Sparse Matrix-Vector Multiplication
and Conjugate Gradient

Sparse matrix-vector multiplication (SPMV) is one
of the most heavily-used kernels in large-scale numer-
ical simulations. To perform a SPMV, y + Az, we
assume that the nonzeros of matrix A are stored in
the Compressed Row Storage (CRS) format [1]. The
dense vector z is stored sequentially in memory with
unit stride. Various numberings of the mesh ele-
ments/vertices result in different nonzero patterns of
A, which in turn cause different access patterns for
the entries of . Moreover, on a distributed-memory
machine, they imply different amounts of communica-
tion.

The Conjugate Gradient (CG) algorithm is the old-
est and best-known Krylov subspace method used to
solve the linear system Az = b. The method starts
from an initial guess ¢ of the vector z. It then succes-
sively generates approximate solutions in the Krylov
subspace, and search directions used in updating the
approximate solution and residual. The algorithm [12]
is outlined in Figure 1. Each iteration of CG involves
one SPMV for Ap;, three vector updates (AXPY) for
Tj41, Tj+1, and pjy1, and three inner products (DOT)
for the update scalars o;; and §; which make the gen-
erated sequences satisfy certain orthogonality condi-
tions. For a symmetric and positive definite linear
system, these conditions imply that the distance be-
tween the approximate solution and the true solution
is minimized.

Compute 19 = pg = b — Axg for an initial guess xg
for j =0,1,..., until convergence

aj = (rj,r;)/(Apj, p;)

Tj+1 = Tj +a;p;

Tj+1 = ’I‘j — C!jApj

Bi = (rj+1,mi+1)/ (1, 7;)

Pj+1 = Tjt1 + Bip;
endfor

Figure 1: The Conjugate Gradient algorithm.

Suppose the matrix A is of order n and has nnz
nonzeros. Then, one SPMYV involves O(nnz) floating-
point operations, while AXPY and DOT involve only
O(n) floating-point operations. Thus, for many prac-
tical matrices, SPMV dominates the other two oper-

ations. This is demonstrated by the results given in
Section 4. Note that both AXPY and DOT are insen-
sitive to mesh orderings.

4 Experimental Results

Our experimental test mesh consists of a two-
dimensional Delaunay triangulation, generated by the
Triangle [14] software package. The mesh is shaped
like the letter “A”, and contains 661,054 vertices and
1,313,099 triangles. The underlying matrix was assem-
bled by assigning a random value in (0, 1) to each (4, 5)
entry corresponding to the vertex pair (v;,v;), where
1 < distance(v;, v;) < 3. All other off-diagonal entries
were set to zero. This simulates a stencil computa-
tion where each vertex needs to communicate with its
neighbors that are no more than three edge lengths
away. The matrix is symmetric with its diagonal en-
tries set to 40, which makes it diagonally dominant
(and hence positive definite). This ensures that the
CG algorithm converges successfully. The final sparse
matrix A has approximately 39 entries per row and a
total of 25,753,034 nonzeros. This sparsity is represen-
tative of matrices obtained from discretizing PDEs on
three-dimensional meshes; however, the connectivity
pattern will be different for three-dimensional prob-
lems. The CG algorithm converges in 13 iterations,
with the unit vector as the right-hand side b and the
zero vector as the initial guess for z. For our test
matrix, the SPMV computation accounts for approx-
imately 87% of the total number of floating-point op-
erations within each CG iteration.

4.1 Distributed-Memory Implementation

In our experiments, we use the parallel SPMV and
CG routines in Aztec [6], implemented using MPI. The
matrix A is partitioned into blocks of rows, with each
block assigned to one processor. The associated com-
ponents of vectors z and b are distributed accordingly.
Communication may be needed to transfer some com-
ponents of z. For example, in y « Az, if y; is up-
dated on processor p;, A;; # 0, and z; is owned by
processor po, then p, must send z; to p;. In general, a
processor may need more than one z-component from
another processor. It is thus more efficient to combine
several z-components into one message so that each
processor sends no more than one message to another
processor. This type of optimization can be performed
in a pre-processing phase. The other two operations,
AXPY and DOT in the CG algorithm, are easily par-
allelized — AXPY requires only local computations,

whereas DOT requires a local sum followed by a global
sum reduction.

Three routines within Aztec are of particular in-
terest to us: AZ_transform, which initializes the data
structures and the communication schedule for SPMV,
AZ matvecmult, which performs the matrix-vector
multiply, and AZ_cg, which solves a linear system us-
ing the CG algorithm. In Table 1, we report the run-
times of the AZ matvec mult and AZ_cg routines on
the Cray T3E at NERSC. Each T3E node consists of a
450 MHz DEC Alpha processor (900 Mflops peak the-
oretical floating-point speed), 96 KB secondary cache,
and is interconnected to other nodes through a 3D
torus. It was not possible to run our test problem
on less than 8 processors of the T3E due to memory
constraints.

Table 2 shows the pre-processing times spent in
AZ transform. The times for METIS, RCM, and
SAW are comparable, and are usually an order of
magnitude larger than the corresponding times for
AZ matvecmult. The AZ_transform times show some
scalability up to 32 processors. However, for ORIG,
the times are two to three orders of magnitude
larger, and show very little scalability. Clearly, the
ORIG ordering is too inefficient and unacceptable on
distributed-memory machines.

P | ORIG | METIS | RCM | SAW

8 | 504.2 2.829 | 2.370 | 2.023
16 | 547.9 1.455 | 1.330 | 1.157
32 | 333.7 0.840 | 0.864 | 0.804
64 | 150.0 0.422 | 0.776 | 0.537

ORIG METIS
P | SPMV | CG | SPMV | CG
8| 0.562 | 8.652 | 0.476 | 7.662
16 | 0.325 | 5.093 | 0.268 | 2.909
32 | 0.199 | 3.167 | 0.087 | 1.468
64 | 0.119 | 1.929 | 0.056 | 0.961
RCM SAW
P | SPMV | CG | SPMV | CG
8| 0.381 | 6.185 | 0.171 | 2.916
16 | 0.193 | 3.198 | 0.086 | 1.491
32 | 0.095 | 1.662 | 0.044 | 0.795
64 | 0.045 | 0.882 | 0.028 | 0.462

Table 1: Runtimes (in seconds) of AZ matvecmult
(SPMV) and AZ cg (CG) using different orderings on
the Cray T3E.

For the key kernel routine AZ matvec mult, SAW
is always about twice as fast as RCM. In turn, RCM
is about 1.5 times faster than METIS on 16 or fewer
processors, and about the same on 32 or more pro-
cessors. Note that when using 32 or more processors,
METIS is twice as fast as ORIG (the natural ordering
from Triangle). For AZ_cg, SAW is again about twice
as fast as RCM. However, we do not see a clear advan-
tage of RCM over METIS for this routine. Both RCM
and METIS are twice as fast as ORIG on large num-
ber of processors. Finally, METIS, RCM, and SAW,
all demonstrate excellent scalability (more than 75%
efficiency) up to the 64 processors that were used for
these experiments, but ORIG seems less scalable (only
about 56% efficiency). As expected, there is a strong
correlation between the performance of CG and the
underlying SPMYV for all test cases.

Table 2: Runtimes (in seconds) of AZ_transform using
different orderings on the Cray T3E.

To better understand the various partitioning and
ordering algorithms, we have built a simple per-
formance model to predict the parallel runtime of
AZ matvecmult. First, using the T3E’s hardware per-
formance monitor, we collected the average number of
cache misses per processor. This is reported in Ta-
ble 3, and shows that SAW has the fewest number
of cache misses. In comparison, RCM, METIS, and
ORIG have between two and three times that num-
ber. Second, we gathered statistics on the average
communication volume and the maximum number of
messages per processor, both of which are also shown
in Table 3. Notice that METIS transfers the least

Avg. Cache Misses (x10°)

P ORIG METIS RCM SAW

8 3.684 3.034 3.749 2.004

16 2.007 1.330 1.905 0.971

32 1.060 0.658 1.017 0.507

64 0.601 0.358 0.515 0.290
Avg. Comm. Vol. (in Mbytes) (Max. # Msgs)

P ORIG METIS RCM SAW
8 | 3.228 (7) | 0.011 (3) | 0.031 (2) | 0.049 (6)
16 | 2.364 (15) | 0.011 (4) | 0.032 (2) | 0.036 (9)
32 | 1.492 (31) | 0.009 (5) | 0.032 (2) | 0.030 (11)
64 | 0.828 (63) | 0.008 (6) | 0.032 (2) | 0.023 (16)

Table 3: Locality and communication statistics for
AZ matvec mult.

amount of data, whereas RCM has the fewest number
of messages.
In our model, we estimate the total parallel runtime
T as
T=T¢+Tn+1T.,

where, T, Ty,, and T, are the estimated per-processor
times to perform floating-point operations, to service
the cache misses, and to communicate the x vec-
tor. Given that a floating-point operation requires
1/900 microseconds and that each cache miss latency
is 0.08 microseconds (both from product documenta-
tion), and assuming that the MPI bandwidth and la-
tency are 50 MB/second and 10 microseconds (both
from measurement), respectively, we can estimate the
total runtime based on the information in Table 3.

ORIG METIS
P | T (deviation) | T,,/T | T (deviation) | T,,/T
8 | 0.367 (-35%) | 0.80 | 0.250 (-47%) | 0.97
16 | 0.212 (-35%) | 0.76 | 0.110 (-58%) | 0.96
32 | 0.117 (-41%) | 0.72 | 0.055 (-37%) | 0.96
64 | 0.067 (-44%) | 0.72 | 0.030 (-46%) | 0.96

RCM SAW

P | T (deviation) | T,,/T | T (deviation) | T,,/T

8 | 0.308 (-19%) | 0.97 | 0.169 (-1%) | 0.95
16 | 0.157 (-19%) | 0.97 | 0.082 (-5%) | 0.94
32 | 0.084 (-12%) | 0.97 | 0.043 (-2%) | 0.94
64 | 0.043 (-5%) | 0.96 | 0.025(-12%) | 0.93

Table 4: Predicted runtimes (in seconds) for
AZ matvecmult (SPMV) on the T3E. The fraction
of the total time spent servicing cache misses is also
shown. In the column of total time T, the percentage
deviation from the measured time is given in paren-
thesis.

Table 4 shows the predicted total time T" and the ra-
tio T, /T. Ty is comparatively negligible (consistently
less than 5% of T') for all ordering strategies and pro-
cessor sets. T, is 18-27% of T for ORIG, but less
than 3% of T for METIS, RCM, and SAW. In paren-
thesis, we also give the percentage deviation of T' from
the measured experimental runtime (that are reported
in Table 1). The maximum deviation from the mea-
sured runtimes is —58%, which gives us a fair degree
of confidence in our model. The results in Table 4
clearly indicate that servicing the cache misses is ex-
tremely expensive and requires more than 93% of the
total time for METIS, RCM, and SAW, and 72-80%
for ORIG (which has relatively more communication).
Although SAW and RCM both incur more communi-

cation than METIS (in terms of the average message
volume as shown in Table 3), their total runtimes are
significantly less. This illustrates that for our com-
bination of applications and architectures, improving
cache reuse can be more important than reducing in-
terprocessor communication.

4.2 Shared-Memory Implementation

The shared-memory version of CG was imple-
mented on the SGI Origin2000, which is a SMP cluster
of nodes each containing two 250 MHz MIPS R10000
processors and local memory. The hardware makes all
memory equally accessible from a software standpoint,
by sending memory requests through routers located
on the nodes. Access time to memory is nonuniform,
depending on how far away the memory lies from the
processor. The topology of the interconnection net-
work is a hypercube, bounding the maximum number
of memory hops to a logarithmic function of the num-
ber of processors. Each processor also has a relatively
large 4 MB secondary cache, where only it can fetch
and store data. If a processor refers to data that is
not in cache, there is a delay while a copy of the data
is fetched from memory. When a processor modifies
a word of data, all other copies of the cache line con-
taining that word are invalidated.

This version of the parallel CG code was written us-
ing SGI’s native pragma directives, which create IRIX
threads. A rewrite to OpenMP would require minimal
programming effort but has not been done at this time.
Each processor is assigned an equal number of rows in
the matrix. The parallel SPMV and AXPY routines
do not require explicit synchronizations, since they do
not contain concurrent writes. Global reduction oper-
ations are required for DOT and the convergence tests.
Two basic implementation approaches described below
were taken.

The SHMEM strategy naively assumes that the
Origin2000 is a flat shared-memory machine. Ar-
rays are not explicitly distributed among the pro-
cessors, and nonlocal data requests are handled by
the cache coherent hardware. Alternatively, the CC-
NUMA strategy addresses the underlying distributed-
memory nature of the machine by performing an ini-
tial data distribution. Sections of the sparse ma-
trix are appropriately mapped onto the memories of
their corresponding processors using the default “first
touch” data distribution policy of the Origin2000. The
computational kernels of both the SHMEM and CC-
NUMA implementations are identical, and simpler to
implement than the MPI version. Table 5 shows the
SPMV and CG runtimes using both approaches with

the ORIG, RCM, and SAW orderings of the mesh. We
also present the runtime of CG using an MPI imple-
mentation on the Origin2000 with the SAW ordering,
as a basis for comparison.

SHMEM
ORIG | RCM | SAW
46.911 | 37.183 | 36.791
28.055 | 21.867 | 21.772
30.637 | 25.350 | 24.751
16.836 | 14.431 | 14.121
16 | 16.348 | 15.516 | 15.548
32 | 16.653 | 15.350 | 15.423
64 | 10.809 | 7.782 | 8.450

CC-NUMA MPI
P | ORIG | RCM | SAW | SAW

1] 46.911 | 37.183 | 36.791

2 | 27.053 | 21.454 | 21.229 | 23.145
4 | 17.608 | 10.651 | 10.593 | 7.880
8

6

o & o |

9.824 | 5.575 | 5.516 | 3.815
6.205 | 2.845 | 2.872 | 1.926
32 | 3.584 | 1.548 | 1.514 | 1.075
64 | 2365 | 0.885 | 0.848 | 0.905

Table 5: Runtimes (in seconds) of CG for different
orderings running in SHMEM and CC-NUMA modes
on the SGI Origin2000. The CG runtimes for an MPI
implementation on the Origin2000 with the SAW or-
dering is also given for comparison.

Notice that the CC-NUMA implementation shows
significant performance gains over SHMEM. This is
expected since the Origin2000 is a distributed-memory
system, and therefore should be treated as such. As
the number of processors increases, the runtime dif-
ference between the two approaches becomes more
dramatic, achieving an order of magnitude improve-
ment when using more than 16 processors. Proper
data distribution becomes increasingly important for
larger numbers of processors since the corresponding
communication overhead grows nonuniformly. Within
the CC-NUMA approach, the RCM and SAW order-
ing schemes dramatically reduce the runtimes com-
pared to ORIG, indicating that an intelligent ordering
algorithm is necessary to achieve good performance
and scalability on distributed shared-memory systems.
There is little difference in parallel performance be-
tween RCM and SAW because both ordering tech-
niques reduce the number of secondary cache misses
and the non-local memory references of the processors.
Recall however that on the T3E, SAW was about twice

as fast as RCM. This discrepancy in performance is
probably due to the larger cache size of the Origin2000
that reduces the beneficial effects of smart ordering.

The last two columns of Table 5 compare the CC-
NUMA and MPI implementations of CG on the Ori-
gin2000 using the SAW ordering. Notice that the run-
times are very similar, even though the programming
methodologies of these two approaches are quite differ-
ent. These results indicate that for this class of appli-
cations, it is possible to achieve message passing per-
formance using shared-memory constructs, through
careful data ordering and distribution.

4.3 Multithreaded Implementation

The Tera MTA is a supercomputer recently in-
stalled at the San Diego Supercomputing Center
(SDSC). The MTA has a radically different archi-
tecture than current high-performance computer sys-
tems. Each 255 MHz processor has support for 128
hardware streams, where each stream includes a pro-
gram counter and a set of 32 registers. One program
thread can be assigned to each stream. The processor
switches among the active streams at every clock tick,
while executing a pipelined instruction.

The uniform shared memory of the MTA is flat,
and physically distributed across hundreds of banks
that are connected through a 3D toroidal network to
the processors. All memory addresses are hashed by
the hardware so that apparently adjacent words are
actually distributed across different memory banks.
Because of the hashing scheme, it is impossible for
the programmer to control data placement. This en-
hances programmability compared to standard cache-
based multiprocessor systems. Rather than using data
caches to hide latency, the MTA processors use mul-
tithreading to tolerate latency. If a thread is waiting
for its memory reference to complete, the processor ex-
ecutes instructions from other threads. Performance
thus depends on having a large number of concurrent
computation threads.

Lightweight synchronization among threads is pro-
vided by the memory itself. Each word of physical
memory contains a full-empty bit, which enables fast
synchronization via load and store instructions with-
out operating system intervention. Synchronization
among threads may stall one of the threads, but not
the processor on which the threads are running, since
each processor may run many threads. Explicit load
balancing across loops is also not required since the
dynamic scheduling of work to threads provides the
ability of keeping the processors saturated, even if dif-
ferent iterations require varying amounts of time to

complete. Once a code has been written in the multi-
threaded model, no additional work is required to run
it on multiple processors, since there is no difference
between uni- and multiprocessor parallelism.

The multithreaded implementation of CG is triv-
ial, requiring only MTA compiler directives. Since
the data structures are dynamically allocated point-
ers, special pragma assertions were used to indicate
that there are no loop-carried dependencies. The com-
piler was thus able to automatically parallelize the ap-
propriate loop segments. Load balancing is implicitly
handled by the operating system which dynamically
assigns rows to threads. The reduction operations for
DOT and the convergence test were handled automat-
ically as well. Otherwise, special synchronization con-
structs were not required since there are no other pos-
sible race conditions in the multithreaded CG. It is
important to highlight that no special ordering was
necessary to achieve parallel performance.

ORIG SAW
SPMV | CG | CG
0.378 | 9.86 | 9.74
0.189 | 5.02 | 5.01
0.095 | 2.53 | 2.64
0.0561 | 1.35 | 1.36

o N (g

Table 6: Runtimes (in seconds) for the original and
SAW orderings on the Tera MTA.

Results using 60 streams per processor are pre-
sented in Table 6. Both CG and the underlying SPMV
achieve high scalability of over 90% using the ORIG
ordering. This indicates that there is enough thread
and instruction level parallelism in CG to tolerate the
relatively high overhead of memory access. There is
a slight drop in performance between four and eight
processors. As we increase the number of proces-
sors, the number of active threads increases propor-
tionately while the runtimes become very small. As
a result, a greater percentage of the overall time is
spent on thread management, causing a decrease in
efficiency. Notice that the SAW ordering does not sig-
nificantly change the performance of CG on this cache-
less architecture. Thus, the programming and runtime
overheads associated with partitioning/linearization
schemes are not required on this platform. We look
forward to continuing our experiments as more pro-
cessors become available on the MTA.

5 Summary and Future Work

In this paper, we examined three different parallel
implementations of the Conjugate Gradient (CG) al-
gorithm using three leading programming paradigms
and architectures. The MPI version of the code on
the T3E uses the Aztec [6] library, where we compared
the parallel performance of ordering the sparse matrix
using reverse Cuthill-McKee (RCM) [3], self-avoiding
walk (SAW) [5], and the METIS partitioner [7]. Re-
sults showed that all three schemes greatly improve
the parallel performance of CG compared to the naive
natural ordering. In addition, we demonstrated that
traditional graph partitioners, which focus on mini-
mizing edge cuts, are not necessarily the best tools
for partitioning sparse matrices on multiprocessor sys-
tems. Using RCM or SAW as an ordering/partitioning
strategy results in a faster CG than METIS, due to
better cache reuse. A performance model was also
presented which predicts the expected sparse matrix-
vector multiply (SPMV) runtime as a function of both
cache misses and communication overhead. Within
each CG iteration, the SPMV is usually the most ex-
pensive operation.

A shared-memory implementation of CG on the
Origin2000 showed that ordering algorithms dramat-
ically improve parallel performance. This is because
the Origin2000 is a distributed-memory architecture,
so proper data distribution is required even when pro-
gramming in shared-memory mode. A direct compar-
ison with an MPI implementation indicated that it is
possible to achieve message passing performance us-
ing shared-memory constructs for this class of appli-
cations through careful data ordering and distribution.
Finally, results of a multithreaded implementation of
CG on the Tera MTA indicated that special ordering
and/or partitioning schemes are not required on the
MTA to obtain high efficiency and scalability.

Realistic scientific applications require precondi-
tioning algorithms, such as ILU, in order for CG to
reach convergence. We plan to investigate the effects
of preconditioning on the performance of CG, for var-
ious ordering strategies and architectural platforms.
We also plan to port the distributed-memory imple-
mentation of CG onto the newly installed RS/6000
SP machine at NERSC. This system consists of 256
two-CPU SMP nodes, and is the first commercial im-
plementation of the POWERS3 microprocessor. In ad-
dition, we will examine the effects of partitioning the
sparse matrix using METIS, and subsequently per-
forming RCM or SAW orderings on each subdomain.
Combining both schemes should minimize interproces-
sor communication and significantly improve data lo-

cality. Future research will focus on evaluating the ef-
fectiveness of the parallel Jacobi-Davidson eigensolver,
when various orderings are applied to the underlying
sparse matrix. A multithreaded version of the Jacobi-
Davidson algorithm will be implemented on the MTA.
We also intend to extend the SAW algorithm to three
dimensions and modify it to efficiently handle adap-
tively refined meshes in a parallel environment.

Acknowledgements

The work of the first two authors was supported
by Director, Office of Computational and Technol-
ogy Research, Division of Mathematical, Informa-
tion, and Computational Sciences of the U.S. Depart-
ment of Energy under contract number DE-ACO03-
76SF00098. The work of the third author was par-
tially supported by the National Science Foundation
under grant numbers NSF-CISE-9726388 and NSF-
MIPS-9707125 while the author was at the Univer-
sity of Delaware. The work of the fourth author was
supported by National Aeronautics and Space Admin-
istration under contract number NAS 2-14303 with
MRJ Technology Solutions.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J.
Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for
the Iterative Methods, SIAM, 1994.

[2] D. A. Burgess and M. B. Giles, “Renumbering
Unstructured Grids to Improve the Performance
of Codes on Hierarchical Memory Machines,” Ad-
vances in Engineering Software, Vol. 28, pp. 189—
201, 1997.

[3] E. Cuthill and J. McKee, “Reducing the Band-
width of Sparse Symmetric Matrices,” Proc. ACM
National Conference, pp. 157-192, 1969.

[4] M. Griebel and G. Zumbusch, “Hash-Storage
Techniques for Adaptive Multilevel Solvers
and their Domain Decomposition Paralleliza-
tion,” AMS Contemporary Mathematics Series,
Vol. 218, pp. 279286, 1998.

[5] G. Heber, R. Biswas, and G. R. Gao, “Self-
Avoiding Walks over Adaptive Unstructured

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Grids,” Concurrency: Practice and Ezperience,
Vol. 12, pp. 85-109, 2000.

S. A. Hutchinson, L. V. Prevost, J. N. Shadid, and
R. S. Tuminaro, Aztec User’s Guide, Version 2.0
Beta, Sandia National Laboratories, SAND95-
1559, 1998.

G. Karypis and V. Kumar, “A Fast and High
Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs,” SIAM J. Scientific and Statistical
Computing, Vol. 20, pp. 359-392, 1998.

R. Lohner, “Renumbering Strategies for Unstruc-
tured-Grid Solvers Operating on Shared-Memory,
Cache-Based Parallel Machines,” Computer
Methods in Applied Mechanics and Engineering,
Vol. 163, pp. 95-109, 1998.

C.-W. Ou, S. Ranka, and G. Fox, “Fast and Paral-
lel Mapping Algorithms for Irregular Problems,”
J. of Supercomputing, Vol. 10, pp. 119-140, 1995.

M. Parashar and J. C. Browne, “On Partition-
ing Dynamic Adaptive Grid Hierarchies,” Proc.

29th Hawaii International Conference on System
Sciences, pp. 604-613, 1996.

J. R. Pilkington and S. B. Baden, “Dynamic Par-
titioning of Non-Uniform Structured Workloads
with Space-Filling Curves,” IEEE Trans. on Par-
allel and Distributed Systems, Vol. 7, pp. 288-300,
1996.

Y. Saad, Iterative Methods for Sparse Linear Sys-
tems, PWS Publishing Company, 1996.

J. Salmon and M. S. Warren, “Parallel, Out-
of-Core Methods for Fast Evaluation of Long-
Range Interactions,” Proc. 8th SIAM Conference
on Parallel Processing for Scientific Computing,
1997.

J. R. Shewchuk, “Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Trian-
gulator,” Applied Computational Geometry: To-
wards Geometric Engineering, LNCS Vol. 1148,
pp- 203-222, 1996.

